高能乳化法(High-energy emulsification method)需要外加能量,通过机械装置提供强大的破坏力来减小尺寸。高能乳化法有超声法、高压均质法和剪切搅拌法等。其主要缺点是仪器成本高,且产生的操作温度高,较高的温度有时不适用于不耐热农药活性成分的加工。
(1)超声法
超声法(Ultrasonic emulsification method)是采用探头超声仪,通过控制超声的频率和时间调节乳滴分散度,制备出不同粒径的纳米乳剂。在机械搅拌下,将油相加入到水相中,先制得粗乳液;然后在不同的超声振幅下对乳液进行短时间的超声处理,直至得到具有理想性能的纳米乳剂。一般超声时间越长,乳化液的动能越大,颗粒尺寸越小。同时,表面活性剂的疏水性越强‚所需超声的时间越长。与其他高能乳化法相比,超声法所需的能量最少,但该技术的一个严重缺点是探头发热会产生铁屑并进入药液,从而引起污染,并且该方法只适合少量样品的制备。
(2)高压均质法
高压均质法(High pressure homogenization method)是利用高速均质机使粗乳液在高压下通过指定的阀门,在高压力的狭小空间内,通过高速撞击、剪切和空穴作用使油相和水相两相混合,制备得到粒径适宜的纳米乳剂。此方法高效且制备的纳米乳剂有良好的均一性,适用于工业生产,其不足之处在于能耗大,且由于在生产过程中会产生较高的温度,所以不利于不耐热的农药活性成分的加工。
(3)剪切搅拌法
剪切搅拌法(High-shear stirring method)是利用高剪切均质乳化机特殊设计的转子和定子,在它们之间的小间隙处,通过电机的高速驱动使液滴高速流动产生剪切力,从而生成纳米乳剂。由于操作简单、能耗低,剪切搅拌法比高压均质法更具优势。剪切搅拌法可以很好的控制粒径,且配方组成有多种选择。
2. 低能乳化法
低能乳化法(Low-energy emulsification method)不需要外加大量能量,是利用体系中各组分之间的内部相互作用,通过助剂改变界面能来使乳滴自发分散,从而形成纳米乳剂。这取决于乳化过程中表面活性剂的行为,减轻了制备过程中对农药活性成分的损失。低能乳化法所消耗的能量相比于高能乳化法要小的多,不仅节能,而且还缩短冷却时间,从而提高了乳化的效率。低能乳化法应用广泛,有很大的发展前景。不过低能乳化法有时会受溶剂类型和可供使用的乳化剂种类的限制。低能乳化法主要包括相转变温度法、相转变组成法、逐滴滴加法、自发乳化法等。
(1)相转变温度法
相转变温度法(Phase inversion temperature method,PIT)是利用表面活性剂在水/油中的溶解度随温度变化而变化,最终形成纳米乳剂的方法。它涉及从W/O到O/W乳状液通过中间双连续相的有序转化或相反转化。首先将水相和油相一次性混合,再利用非离子型乳化剂在不同温度下的疏水性和亲水性不同而形成的不同的乳液。通常这类乳化剂的疏水性随着温度的升高而增强,当温度低于体系的相转变温度时,非离子型乳化剂亲水性增强,从而形成O/W型乳液;当温度高于体系的相转变温度时,乳液发生相反转,则变成W/O型乳液。由于该方法需要改变体系温度,所以对温敏农药活性成分不能使用,相应的只适用于对温度敏感的表面活性剂,如聚氧乙烯类表面活性剂。同时良好的水、油、表面活性剂和农药活性成分的互溶性是促进相变顺利进行的前提。此外,除了温度,其他参数如盐的浓度及pH值亦会对乳化产生影响。
(2)相转变组成法
相转变组成法(Phase inversion composition method,PIC)是温度不变,通过改变体系中水相和油相的组成而形成纳米乳剂。任何表面活性剂都可以应用于PIC法。乳液制备初始的体系为油相,之后把水相持续地加入到油相中,当油相过剩时即形成W/O型乳剂。之后随着水相的持续添加,比例增大,表面活性剂的曲率(指弯曲程度的数值,曲率越大,表明弯曲程度越大)改变,水滴逐渐聚结在一起,在相转化点时,表面活性剂会形成层状结构,此时的表面张力最小,有助于形成非常小的分散乳滴。在乳剂相转化点过后,随着水相的进一步增加形成O/W型乳剂。对于相转变组成法,在适当的温度、搅拌速率及滴加速度情况下,纳米乳剂粒径基本取决于乳化剂与油的比例。
(3)逐滴滴加法
逐滴滴加法(Dropwise addition method)指温度一定的情况下,将乳液的内相逐渐滴加到体系中,与PIC法操作类似,但是滴加的是内相,因此滴加过程中体系不会发生相反转,最终能制得内相含量很低的纳米乳剂。
(4)自发乳化法
自发乳化法(Spontaneous emulsification method)是将油相加入到水相中,充分混合后,再经过减压蒸馏去除有机溶剂,形成纳米乳剂。这是一种由溶剂或表面活性剂的快速扩散而引发的组分之间的相互作用,该过程不改变体系中表面活性剂的曲率。在制备过程中,因油相和表面活性剂的浓度不同可生成基于表面活性剂、水和油3个组分的三元相图。三元相图所示的各向同性区域表示配方的各种组合。相图中所有可以形成纳米乳剂的区域中,选择表面活性剂浓度最小的点为最佳配方。油相和表面活性剂的性质以及油相与水相的混溶性等均会影响自乳化的过程,不同的体系会通过不同的机制形成纳米乳剂。除此之外,油的黏度、表面活性剂的HLB值和油相与水相的混溶性等是决定自发乳化法制备纳米乳剂质量的重要因素。自发乳化法操作简单、经济实用,但也有一定局限性,比如它要求油的含量低(一般是1%)、溶解油相的溶剂可以以任何比例与水混溶、油相中的溶剂能够除去等。